
Caching and Performance Deep Dive
Fabian Franz

VP of Software Engineering
Tag1 Consulting

@fabianfranz

Overview

● Fabian Franz

● VP of Software Engineering @ Tag1 Consulting

● Co-Author of BigPipe and the Drupal 8/9 Caching

system + D7 core maintainer + subsystems ...

=> Motivation: Teach you all I know about Caching!

Overview
About me

● Disclaimer: Absolute beginner session!

● Some concepts from a different angle

however.

● Roughly three parts with 10 min each and 5

min for Questions in between parts

Overview
What to expect: Educational Session

● Part 1: General caching and cache invalidation strategies

(cache items, cache max-age and tags)

● Part 2: Cache variation, cache hit ratio, placeholders and

uncacheable things

Part 3: Caching layers + Common Caching Pitfalls

Overview
What to expect

1. What is Caching?

In computing, a cache is a hardware or software

component that stores data so that future requests for that

data can be served faster; the data stored in a cache might

be the result of an earlier computation or a copy of data

stored elsewhere.

Wikipedia

“ “

● Example: We have a restaurant and

we prepare meals (pages)

● Pizza takes 10 min to prepare

● Takeaway => Pizza is wrapped and

given out

What is Caching?
Sooo much theory ...

Attribution: Stevemconst61 / Public domain

● Example: We have a restaurant and

we prepare meals (pages)

● Pizza takes 10 min to prepare

● Takeaway => Pizza is wrapped and

given out -----> THAT IS CACHING!

What is Caching?
Sooo much theory ...

Attribution: Sarahinloes / CC BY-SA 4.0

● That’s a cache, performance of

pizza delivery is improved

● Finite numbers of pizzas?

What is Caching?
Sooo much theory ...

Attribution: igorovsyannykov / CC0

● We have a magic replicator!

● Customer comes, we replicate the Pizza that

we prepared earlier, and give it away

What is Caching?
Sooo much theory ...

● Every item that we cache gets a name: Cache

item name or cache address

● In Drupal this is a cache ID or later this is also

called “cache keys”

● Cache keys sample -- [‘pizza’, ‘margherita’] =>

pizza:margherita

What is Caching?
Sooo much theory ...

Let’s make Pizza! :D

$pizza = \Drupal::cache('pizzas')->get('pizza:margherita');

if ($pizza) {

 return $pizza;

}

$pizza = \Drupal::service('pizza.oven')->make('margherita');

\Drupal::cache('pizzas')->set('margherita', $pizza);

return $pizza;

How to cache?
Examples for you :)

Who sees the bug?

$cid = 'pizza:margherita'; // Cache ID

$pizza = \Drupal::cache('pizzas')->get($cid);

if ($pizza) {

 return $pizza;

}

$pizza = \Drupal::service('pizza.oven')->make('margherita');

\Drupal::cache('pizzas')->set($cid, $pizza);

return $pizza;

How to cache?
Fixed example!

How long is a product valid?

● Supermarket: Best before [DATE]

● Pizza after a while looks like this =>

Don’t want to eat it anymore …

● Solution: Expiration date

image

How long is a
product valid?

$cid = 'pizza:margherita'; // Cache ID

$time_to_live = 10*60; // 10 min valid

$pizza = \Drupal::service('pizza.oven')->make('margherita');

\Drupal::cache('pizzas')->set($cid, $pizza, $time_to_live);

return $pizza;

Best before:
09/2022

● Page cache in Drupal 3-6

● Still a perfect pattern => EASY!

● Cache for 10 min unconditionally, great for

high traffic sites

Best before:
09/2022

Weekend - let’s clean up!

$cid = 'pizza:margherita'; // Cache ID
\Drupal::cache('pizzas')->delete($cid);

Weekend!
Let’s clean-up!

Let’s offer Frozen Margherita!

● Dough with 00-flour, pint of salt + water

● Custom made Tomato Sauce

● Mozzarella

● Basil

$cid = 'pizza:margherita'; // Cache ID

$bin = 'frozen_pizzas';

$time_to_live = 30*24*60*60; // 30 days valid!

$pizza = \Drupal::service('pizza.maker')->makeFrozen('margherita');

\Drupal::cache($bin)->set($cid, $pizza, $time_to_live);

return $pizza;

Let’s keep it for
longer

Recap - How our Shop works!

● [Customer] drives to our Pizza Shop

● [Customer] orders a frozen [Pizza Margherita]

● [Waiter] gets the [Pizza] from the fridge at

the counter

● [Waiter] checks the expiration date, if it’s

expired he gets one from central storage in

the cellar

● [Waiter] replicates and delivers the pizza to

the customer

Recap (Slides)

Let’s offer Marinara as well!

● Dough with 00-flour, pint of salt + water

● Custom made Tomato Sauce

● Extra virgin olive oil

● Oregano + Garlic It’s a vegan pizza!

$cid = 'pizza:marinara'; // Cache ID

$bin = 'frozen_pizzas';

$time_to_live = 30*24*60*60; // 30 days valid!

$pizza = \Drupal::service('pizza.maker')->makeFrozen('marinara');

\Drupal::cache($bin)->set($cid, $pizza, $time_to_live);

return $pizza;

Mooore Pizza!
Completely new pizza! Not a variation. Now on offer!

Success! We are growing!

A better recipe for the dough!

After super-secret expedition to Italy!

Pizza-Dough 2.0

● Invalidate all the (cached) old pizzas

● Not wait for 30 days

● How do we know if they are new or old?

Pizza-Dough 2.0
We are lovin’ it!

$pizza = \Drupal::cache('frozen_pizzas')->get('pizza:margherita:dough_version=2');

if ($pizza) {

 return $pizza;

}

Pizza-Dough 2.0
Naive solution

● This does not scale :(

● All old versions are kept around

What a Mess!

pizza:marinara:dough_version=2

pizza:marinara:dough_version=3

pizza:marinara:dough_version=4

pizza:marinara:dough_version=10

pizza:marinara:dough_version=10

pizza:margherita:dough_version=10

pizza:margherita:dough_version=3

pizza:margherita:dough_version=4

name: Margherita

expires: 08/2020

tags:

 - dough_version: 2

Pizza-Dough 2.0
Let’s tag it!

name: Marinara

expires: 08/2020

tags:

 - dough_version: 2

$cid = 'pizza:marinara'; // Cache ID

$bin = 'frozen_pizzas';

$time_to_live = 30*24*60*60; // 30 days valid!

$pizza = \Drupal::service('pizza.maker')->makeFrozen('marinara');

\Drupal::cache($bin)->set($cid, $pizza, $time_to_live, ['dough_version']);

Pizza-Dough 2.0
Let’s tag it!

$cid = 'pizza:marinara'; // Cache ID

$bin = 'frozen_pizzas';

$time_to_live = 30*24*60*60; // 30 days valid!

$cache_tags = ['dough_version'];

$pizza = \Drupal::service('pizza.maker')->makeFrozen('marinara');

\Drupal::cache($bin)->set($cid, $pizza, $time_to_live, $cache_tags);

Pizza-Dough 2.0
Let’s tag it!

\Drupal::cache($bin)->invalidateTags(['dough_version']);

Release a new dough version, do that:

● Drupal versions the tags automatically

● cachetags table: `tag, invalidations`

● It’s a version number conceptually!

Pizza-Dough 2.0
Tagging is versioning!

● v3.1.0 (versions)

● 2020-07-15 (timestamps)

● Snow Leopard (names)

● 1..10000 (counters)

Pizza-Dough 2.0
Ways of Tagging

● node:1 is saved and cache tag is invalidated

(v42 -> v43)

● node:1 cache tag now SHOULD BE v43

● Anything tagged with node:1 must have

value of v43, else it’s invalid

Pizza-Dough 2.0
This ain’t easy

● Complex, but once mastered this is so

powerful:

Cache Item = {Name, tag=v42}

Canonical Store = {Current Version of tag =

v43}

Pizza-Dough 2.0
This ain’t easy

Hint: Everything in the same request always

uses the same current version.

In other words: The waiter just checks the list of

dough versions e.g. once a day and not every

minute.

Pizza-Dough 2.0
This ain’t easy

Recap - How our Shop works
- now with tagging!

● [Customer] drives to our Pizza Shop

● [Customer] orders a frozen [Pizza Margherita]

● [Waiter] gets the [Pizza] from the fridge at the counter

● [Waiter] checks the expiration date and tags

● [Waiter] marks the pizza as valid or invalid

● If the pizza is not valid, he gets one from central

storage in the cellar

● [Waiter] replicates and delivers the pizza to the

customer

Recap (Slides)

We now know how to:

● Get an item from the cache

● Set an item into the cache

Recap
All that we learned so far!

● Direct deletion / invalidation by name of item

[cache id - name]

● Time based (TTL - time to live) invalidation

[cache - max-age]

● Tag based invalidation [cache - tags]

Recap
Three ways to expire the cache! *sing*

We also implicitly created a new cache:

● The list of versions for the tags (we store it for

the time of the request)

Hence: Cache tags DON’T solve the problem of cache

invalidation, they just move it to somewhere else.

Recap
Core is cheating :p

1. What is Caching?

Question Time!

2. What should
you cache?

2 years later

Grown even more!

Success is great!

Ready for new products!

Pizza-Shop 2.0
Gluten-free dough, vegan mozzarella, pizza spinacci, ...

● New pizza variations

● Gluten free offering

● Vegan Margherita offering (Marinara was

always vegan!)

Quick Recap
(now with 100% more variation)

● [Customer] comes and orders a pizza

● [Waiter] asks for the preferences (vegan/gluten free)

(cache context)

● [Waiter] checks the fridge for the wanted variation

● [Waiter] gives the wanted variation to the customer

(cache hit) or produces it (cache miss) and then stores

it in the fridge

Recap (Slides)

Pizza-Shop 2.0
Let’s add it to the name (again?!)

● - pizza:margherita:vegan:glutenfree

● - pizza:margherita:vegan:gluten

● - pizza:margherita:vegetarian:glutenfree

● - pizza:margherita:vegetarian:gluten

● - pizza:marinara:vegan:glutenfree

● - pizza:marinara:vegan:gluten

● - pizza:marinara:vegetarian:glutenfree

● - pizza:marinara:vegetarian:gluten

Hmm, nope!

Pizza-Shop 2.0
What we would like:

pizza:margherita pizza:marinara

glutenfree gluten glutenfree gluten

vegan vegetarian vegan vegetarian

● ... are used for variation in Drupal 8/9

● ... are computed on demand

● … internally adds the cache context values to the

Cache ID name

Cache Contexts
Vary me if you can!

Name: pizza:margherita

Cache Contexts:

 - vegan=yes|no

 - gluten_free=yes|no

Cache Contexts
Pizza-Shop 2.0

Name: pizza:margherita:vegan=yes|no:glutenfree=yes|no

Expires: 09/2020

Tag:

 - dough_version=2

Name: pizza:marinara

Cache Contexts:

 - gluten_free=yes|no

Cache Contexts
Pizza-Shop 2.0

Name: pizza:marinara:glutenfree=yes|no

Expires: 09/2020

Tag:

 - dough_version=2

Quick Recap
(now with intelligent variation)

● [Customer] drives to our Pizza Shop

● [Customer] orders a frozen [Pizza Margherita] (Cache ID)

● [Waiter] looks at the [Pizza] variations for Margherita (Cache Context Router)

● [Waiter] asks the [Customer] for his preferences (vegan and/or gluten-free?)

(Cache Context Execution)

● [Waiter] gets the preferred [Pizza] from the fridge at the counter (Cache Retrieval)

● [Waiter] checks the expiration date and tags (Cache validation)

● [Waiter] marks the pizza as valid or invalid

● If the pizza is not valid, he gets one from central storage in the cellar (Cache miss)

● [Waiter] replicates and delivers the pizza to the customer (Cache hit)

Recap (Slides)

● Only works with Render Arrays

● Took us quite some time to understand in depth

● RenderCache could provide it as Service in the future

Cache Contexts
Practical Example

$cid = 'pizza:marinara'; // Cache ID

$bin = 'frozen_pizzas';

$time_to_live = 30*24*60*60; // 30 days valid!

$cache_tags = ['dough_version'];

$pizza = \Drupal::service('pizza.maker')->makeFrozen('marinara');

\Drupal::cache($bin)->set($cid, $pizza, $time_to_live, $cache_tags);

Cache Contexts
Direct vs. Render Array - Compare:

$build = [
 '#cache' => [
 'bin' => 'frozen_pizzas',
 'keys' => ['pizza','marinara'],
 'max-age' => $time_to_live,
 'tags' => $cache_tags,
],
];

$build['#pre_render'][] = function($elements) {
 $elements['pizza'] = \Drupal::service('pizza.maker')->makeFrozen('marinara');
 return $elements;
};

Cache Contexts
Direct vs. Render Array - Compare:

● Provide the Cache metadata via #cache

● Provide the Cache miss function (#pre_render)

Cache Contexts
Practical Example using Render Array

$build = [
 '#cache' => [
 'contexts' => ['user.vegan', 'user.glutenfree'],
 'keys' => ['pizza', $pizza_name],
 'max-age' => $time_to_live,
 'tags' => $cache_tags,
],
];

$build['#pre_render'][] = function($elements) use ($pizza_name) {
 $elements['pizza'] = \Drupal::service('pizza.maker')->makeFrozen($pizza_name);
 return $elements;
};

Cache Contexts
Render Array with Cache Contexts added

$build = [
 '#cache' => [
 'keys' => ['pizza', $pizza_name],
 'max-age' => $time_to_live,
 'tags' => $cache_tags,
],
];

$build['#pre_render'][] = function($elements) use ($pizza_name) {
 $elements['pizza'] = \Drupal::service('pizza.maker')->makeFrozen($pizza_name);
 return $elements;
};

$build['#cache']['contexts'] = ['user.vegan', 'user.glutenfree'];

Cache Contexts
Render Array with Cache Contexts added

$build = [
 '#cache' => [
 'keys' => ['pizza', $pizza_name],
 'max-age' => $time_to_live,
 'tags' => $cache_tags,
],
];

$build['#pre_render'][] = function($elements) use ($pizza_name) {
 $elements['pizza'] = \Drupal::service('pizza.maker')->makeFrozen($pizza_name);

 $elements['#cache']['contexts'][] = 'user.glutenfree';
 if ($pizza_name == 'margherita') {
 $elements['#cache']['contexts'][] = 'user.vegan';
 }
 return $elements;
};

Cache Contexts
Render Array with dynamic cache contexts

class UserVeganCacheContext extends UserCacheContext {

 /**
 * {@inheritdoc}
 */
 public static function getLabel() {
 return t('Vegan User');
 }

 /**
 * {@inheritdoc}
 */
 public function getContext() {
 return $this->user
 ->field_vegan
 ->value() ? 'yes' : 'no';
 }

}

Cache Contexts
Creating a Cache Context: src/UserVeganCacheContext.php

services:

 cache_context.user.vegan:

 class: Drupal\pizza\UserVeganCacheContext

 arguments: ['@current_user']

 tags:

 - { name: cache.context}

Cache Contexts
Creating a Cache Context: pizza.services.yml

TADA! That works great!

Alert: Fridge is full!

So many variations ...

● Pizza Spinacci is bought way less

● Custom pizza is “uncacheable”

● Check your cache hit ratio and
invalidations:
https://www.drupal.org/project/
cache_metrics

Help!
Soooo many variations ...

Attribution: Agnieszka Kwiecień (Nova / CC BY-SA 3.0)

https://www.drupal.org/project/cache_metrics
https://www.drupal.org/project/cache_metrics

● Let’s disable the cache

● Easiest: Not cache at all

Help!
Soooo many variations ...

Attribution: Agnieszka Kwiecień (Nova / CC BY-SA 3.0)

$build['#cache']['max-age'] = 0;

Disable cache
Max-Age = 0

$cacheable_object->setCacheMaxAge(0);

Disable cache
For cacheable objects

<?php

$build['#pre_render'][] = function($elements) use ($pizza_name, $ingredients) {
 if ($pizza_name == 'custom') {
 $pizza = \Drupal::service('pizza.maker')->makeCustomPizza($ingredients);
 $elements['#cache']['max-age'] = 0;
 return $elements; // We early return ...
 }

 if ($pizza_name == 'spinacci') {
 $elements['#cache']['max-age'] = 0; // We fall through ...
 }

 // [...] The rest of the callback

 return $elements;
};

Disable Cache
Full example

● Cache max-age=0 set after function has been

rendered

● Pitfall: Clear your cache (drush cr) after making such a

change during local development

-> Happened to me more often than I’d like to admit ...

Disable Cache
Practical Example using Render Array

● Pitfall: Clear your cache (drush cr) after making such a

change during local development

● 3 ways:
- drupal cache:tag:invalidate rendered

- drush cache:tag rendered

- \Drupal\Core\Cache::invalidateTags(['rendered']);

Disable Cache
Practical Example using Render Array

$build = [
 '#cache' => [
 'keys' => ['pizza', $pizza_name],
 'max-age' => $time_to_live,
 'tags' => $tags,
],
 '#pizza_name' => $pizza_name,
 '#pre_render' => [$this, 'makePizza'],
];

if (in_array($pizza_name, ['custom', 'spinacci'])) {
 $build['#cache']['max-age'] = 0;
}

Disable Cache
Before it is retrieved from the Cache

● It’s always more efficient to disable the cache before

the item is retrieved from the Cache

● Similar to: Request based Cache Policy

Disable Cache
Practical Example using Render Array

Cache Chains

No Pizza-Shop creates
the Pizza always from Scratch

Pizza is made from pre-prepared things:

Dough (12-24 hrs till ready), Tomato sauce,
Ingredients

● Main page response (need to custom cache)

● Blocks, Menus, Header, Footer, …

[Decoration around the main page response]

Composing Sites
Pages consist of different cached and uncached parts

● Start with the empty pan, add the dough, add the

tomato sauce add the mozzarella cheese and then add

the mushrooms.

● Start with a finished pizza margherita and just add the

mushrooms.

Pizza Funghi
2 ways to create a Pizza with Mushrooms!

That is what the true power of dynamic page cache is:

● We cache the response

● We add flavor / placeholders afterwards

Pizza Funghi
+ Dynamic Page Cache

Drupal 8+9 with two ways for really dynamic things:

● Disable the (dynamic) page cache; just cache all the

inner parts (blank pan, create from scratch)

● Cache the whole response in dynamic page cache and

just add some placeholders for dynamic data

Pizza Funghi
+ Dynamic Page Cache

● Glutenfree cannot be a placeholder

● It’s the foundation of our pizza

● Both are needed:

- Variation (varies all cache entries)

- Placeholders (out of band)

=> Decide case-by-case

Pizza Funghi
+ Dynamic Page Cache

Placeholders

● A placeholder in Drupal: Can be independently

rendered. Must not depend on anything that has been

executed before.

For example:

● It’s not possible to add more wheat to the dough after

the pizza is finished already.

Pizza M+X
Margherita + Placeholders

$elem['#attached']['placeholders']['%%ingredients_placeholder%%'] = $build;

$elem['#markup'] = '%%ingredients_placeholder%%';

Pizza M+X
Classified - Top Secret - Placeholders internal structure

Contract:

● Executed after all other parts have been rendered

● #pre_render => #lazy_builder (stronger contract)

Pizza M+X
+ Placeholders

$build = [

 '#cache' => [

 'keys' => ['pizza', $pizza_name],

 'max-age' => $time_to_live,

 'tags' => $cache_tags,

],

];

$build['#pre_render'][] = function($elements) use ($pizza_name) {

 $elements['pizza'] = \Drupal::service('pizza.maker')->makeFrozen($pizza_name);

 return $elements;

};

Placeholders
LazyBuilder vs. #pre_render

$build = [

 '#cache' => [

 'keys' => ['pizza', $pizza_name],

 'max-age' => $time_to_live,

 'tags' => $cache_tags,

],

];

$build['#lazy_builder'] = [

 '\Drupal\pizza\PizzaLazyBuilder::build',

 [$pizza_name],

];

Code
Lazy Builder - Auto Placeholdering

$build = [

 '#cache' => [

 'keys' => ['pizza', $pizza_name],

 'max-age' => $time_to_live,

 'tags' => $cache_tags,

],

];

$build['#lazy_builder'] = [

 '\Drupal\pizza\PizzaLazyBuilder::build',

 [$pizza_name],

];

$build['#create_placeholder'] = TRUE;

Code
Lazy Builder - Explicit Placeholder

Lazy Builders:

● Must not contain complex data (enforced!)

● Must not depend on the main page request

Pizza M+X
+ LBs + Placeholders - Pitfalls (!)

Lazy Builders + Placeholders allows to:

● Use big_pipe (in Core, enable and good to go!)

● Cache the uncacheable

● Break up variation: per-page/per-user => per-page +

per-user

Pizza M+X
+ LBs + Placeholders

2. What should
you cache?

Question Time!

3. Where should
you cache?

Shop is even
more successful!

But Customers
need to drive to us :(

Many drive for 2 hours
and more

Can’t we do something
about that?

Solution: We offer our pizza
in supermarkets around the world!

Solution:

Content Delivery Network (CDN)

Drupal 8/9 makes it easy:

● Choose CDN (Akamai, Cloudflare, Fastly) or Varnish

● Enable module

● Profit!

CDN
Pizza Delivery Network (PDN!)

CDN does the checks:

● Has the pizza expired?

● Is the dough_version still matching?

● dough_version changes => Give CDN a heads up!

CDN
Pizza Delivery Network (PDN!)

See headers for yourself:

● X-Drupal-Cache-Tags

● Debug option

CDN
Pizza Delivery Network (PDN!)

parameters:

 # Cacheability debugging:

 #

 # Responses with cacheability metadata (CacheableResponseInterface instances)

 # get X-Drupal-Cache-Tags and X-Drupal-Cache-Contexts headers.

 #

 # For more information about debugging cacheable responses, see

 # https://www.drupal.org/developing/api/8/response/cacheable-response-interface

 #

 # Not recommended in production environments

 # @default false

 http.response.debug_cacheability_headers: true

Code
Title

 And this is the result:

● X-Drupal-Cache-Tags: dough_version

● Expires: 09/2022

CDN
Pizza Delivery Network (PDN!)

Great - but what about the dough itself?

Need to get it from warehouse 10 miles away.

Let’s put it in a fridge under the counter

Drupal has ChainedFast:

● ACPu (shared memory within PHP process)

Main rule of thumb:

● If you have things that are seldom changing, put it

into a special bin and connect that bin to “chained

fast”. (mostly read only cache traffic)

Efficiency 3.0
Dough near the counter

$settings['cache']['bins']['pizza_dough'] = 'cache.backend.chainedfast';

Efficiency 3.0
The dough is always near the counter - yeah!

Second rule:

Never put chained fast on things that are often

changing or have lots of variations:

● You can get serious write lock problems and

performance will decrease!

● If the cache is full it can lead to lock-ups as a full

garbage collection needs to be performed.

No Efficiency 3.0
The custom made pizzas should NOT be stored near the counter

 APCu is ideal (and used in Drupal) for:

● FileCache (depends only if the file has changed)

● ClassCache (depends only on where the class sits on

the filesystem)

● Config cache (is invalidated only if config changes)

This shows now also the importance of ‘bins’ as those

can have different cache backends associated with them.

Efficiency 3.0
APCu is really cool :D

Don’t forget Redis / Memcached

● MySQL is a warehouse that’s across the street

● Memcached / Redis is a fridge that is in the room next

door

● ACPu is the fridge below the counter.

Efficiency 4.0
Memcached/Redis is also cool

● MySQL: Large Storage space / Slow: 2-5 ms response

times usually

● Memcached / Redis: Medium storage space / Fast: 0.5 -

1 ms response times usually

● APCu: Small storage space / Fastest: 0.05 ms usually

Efficiency 4.0
Advantages and Disadvantages, hmmm - what to do ...

It is important to distinguish two cases:

● Caches used for creating the pizza (MySQL, APCu,

Memcached) [from parts]

● Caches used for delivering the pizza to the customer

(MySQL, Memcached, CDN, Browser Cache)

Efficiency 4.0
Create Pizza + Deliver Pizza are different cache paths

Lot’s of customers at once

=> Pizza with Spring Onions

● The spring onions can only be cached for a very short

while (micro-caching)

● Potential bottleneck

=> Stampede protection (build into most CDNs)

SHIELD!

Spring Onions
Only seconds TTL

● Inefficient: Prepare lot’s of pizzas in parallel

● Instead: Prepare one spring onion pizza and then just

replicate it.

Stampede Protection
Microcaching + Stampede Protection

public function stampedeProtect($cid) {
 $item = $this->cache->get($cid);
 if ($item) {
 return $item;
 }

 $acquired_lock = $this->lock->acquire('stampede:' . $cid);
 if (!$acquired_lock) {
 sleep(1);
 return $this->stampedeProtect($cid); // Let’s try that again.
 }

 // Rebuild cache
 $item = $this->rebuild();

 $this->cache->set($cid, $item, 30); // Cache for only 30 seconds
 $this->lock->release($acquired_lock);

 return $item;
}

Stampede Protection

Common Caching
Pitfalls

Plan your caching strategy:

● Know what depends on what

● Known when something needs to be invalidated

● https://drupal.org/project/renderviz module can be a

really nice help here.

Common Caching Pitfalls
Planning to fail is better than failing to plan

https://drupal.org/project/renderviz

Have fun and I’ll
make a Pizza now ;)

yummy

The End!

More Questions?

Follow me: @fabianfranz

Code
Title

Title slide
Additional title

Lorem ipsum dolor sit amet,

consectetur adipiscing elit. Quisque

ultricies dolor id mi auctor.
image

Title
Second line

image

Title
Second line

Lorem ipsum dolor sit amet,

consectetur adipiscing elit. Quisque

ultricies dolor id mi auctor.

Title

image

Lorem ipsum dolor sit amet,

consectetur adipiscing elit. Quisque

ultricies dolor id mi auctor.

Title

image

Lorem ipsum dolor sit amet,

consectetur adipiscing elit. Quisque

ultricies dolor id mi auctor.

image

Title
Second line

● List Item 1

● List Item 1

● List Item 1

Some Section header
Second Line

Title
Second line

Lorem ipsum dolor sit amet, consectetur adipiscing

elit. Quisque ultricies dolor id mi auctor, vel rutrum

diam sodales. Duis nulla justo, commodo

● List Item 1

● List Item 1

● List Item 1

● List Item 1

● List Item 1

● List Item 1

● List Item 1

● List Item 1

● List Item 1

● List Item 1

Title
Second line

This will be a quote about

something or someone

AUTHOR

“ “

